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Sources of Nanominerals

Man-made

Biomineralization Weathering

Chemical synthesis

Combustion products

Inorganic precipitation

Natural
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~ 1.5 nm

Suzuki et al.,  Nature 419, 134 (2002) Labrenz et al.,  Science 290, 1744 (2000)

Biogenic UO2 nanoparticles 

Biogenic ZnS
nanoparticles

Moreau et al.,
Am. Mineral. 89,

950 (2004)

α-FeOOH nanoparticles 
Nanoparticle Aggregation

Morphologies

Chris Kim
unpublished
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Consequences of Aggregation

•  Mineral Growth
- Aggregation-based pathways

•  Transport
- Bioremedation efficacy

•  Surface Geochemical Processes
- Ligand-mediated dissolution

•  Detection
- Induced polarization methods
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1  •  Under what conditions do nanoparticles aggregate?
- Size, solution chemistry      experiment
- Derive interparticle forces    modeling

2  •  What aggregate structures are formed? 
- Measure cluster size, morphology, density   experiment
- Simulate aggregation processes                   modeling

3  •  How do aggregates travel through porous media? 
- Flow column experiments                        experiment
- Simulate settling and straining effects       modeling

Nanoparticles in Aqueous Environments
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Small-angle
x-ray

scattering
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Suggested reading:

Small-angle X-ray Scattering

Neutron, X-ray and Light Scattering:
Introduction to an Investigative Tool for
Colloidal and Polymeric Systems

P. Lindner & Th. Zemb (Eds.)

North-Holland, Amsterdam, 1991

www.alibris.com
www.zubalbooks.com
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• SAXS: small-angle x-ray scattering
10-3 Å-1 < qmax  < 0.1 Å-1

- Scattering from electron density contrast

• WAXS: wide-angle x-ray scattering
 0 < qmax  < 5 Å-1

- Equivalent to conventional X-ray Diffraction (XRD)

• High-energy WAXS:
qmax  > 20 Å-1

- Fourier inversion provides the real-space Pair Distribution Function

! 

q =
4"

#
sin$
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q =
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d

X-ray scattering basics
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SAXS = diffraction from particles WAXS = XRD = diffraction from atoms

Small-angle X-ray Scattering

Redl et al.,  Nature 423, 968 (2003)

x-rays x-rays

oriented Fe2O3
and PbS
nanoparticles

ZnS crystal
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P(q) = particle scattering

Small-angle X-ray Scattering
S(q) = interparticle scattering

I(q) = S(q)P(q) 

Dilute solutions:

I(q) = P(q) 

Concentrated solutions or
aggregates:

x-rays x-rays

Scattering vs. q, not θ : 
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(identical particles)
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The particle scattering, P(q), depends on the shape of the particle

Small-angle X-ray Scattering

E.g., Form factor, F(q), for rods length L = 80 nm, diameter d = 4 nm 
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The Structure Factor, S(q), given by relative arrangement of particles

Small-angle X-ray Scattering

S(q) is related to statistical descriptions of the particle positions: 

the particle-particle pair correlation functions, g(r) 

! 

S(q) =1+
1

N

sin(qrij )

qrijj= i+1

N

"
i=1

N#1

"

Computationally convenient. S(q) can be calculated just like the
Debye Eqn for x-ray diffraction

e.g., for N particles of known position

… this is a discrete sin-transform of g(r)!
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Definition of g(r) 

! 

S(q) =1+
N

V
4"r2 g(r) #1[ ]

sin(qr)

qr
dr$

1D representation of 3D structure
Related to the radial distribution function (RDF)
Probability of finding another particle within r      r + δr

Small-angle X-ray Scattering
The Structure Factor, S(q), given by FT of the pair correlation function, g(r)

1

g(r)

2r r

e.g., hard spheres model
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Definition of g(r) 

! 

S(q) =1+
N

V
4"r2 g(r) #1[ ]

sin(qr)

qr
dr$

1D representation of 3D structure
Related to the radial distribution function (RDF)
Probability of finding another particle within r      r + δr

Small-angle X-ray Scattering
The Structure Factor, S(q), given by FT of the pair correlation function, g(r)

1

g(r)

2r r

e.g., electrostatic repulsion
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Definition of g(r) 

! 

S(q) =1+
N

V
4"r2 g(r) #1[ ]

sin(qr)

qr
dr$

1D representation of 3D structure
Related to the radial distribution function (RDF)
Probability of finding another particle within r      r + δr

Small-angle X-ray Scattering
The Structure Factor, S(q), given by FT of the pair correlation function, g(r)

1

g(r)

2r r

e.g., fractal structure

?
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Analysis of SAXS data for aggregates = estimating g(r)

I. Analytical expression for g(r) II. Simulate g(r) 

Computer
model

constrain n(r), P(q)

Simulated SAXS

e.g. fractal aggregates

e.g. hard spheres

! 

g(r) "1[ ]# rDF "3 exp "r $( )

Small-angle X-ray Scattering

Complex coupled equations
Hedstrom et al.,
Langmuir 20, 1535 (2004)

Experimental SAXS

van Garderen et al.,
J. Chem. Phys. 102,
480 (1995)
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Two length scales - two Porod regions
SAXS from dried ZnS nanoparticles

SAXS from Porous Media

~ q 3.6 

~ q 3.8 

porous grains

voids

Scattering from grains
Scattering from nanoparticles

Theory: Spalla et al., J. Appl. Cryst. 36, 338 (2003)
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SAXS from Porous Media

Surface area of grains

Surface area of nanoparticles

Ratio of surface areas = 600

Two length scales - two Porod regions

porous grains

voids

Asymptotes give two surface areas

Theory: Spalla et al., J. Appl. Cryst. 36, 338 (2003)
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Colloid Behavior of Goethite
Nanoparticles

Research plan:

   SAXS of nanoparticle dispersions
        interparticle interaction forces

   Simulations of aggregation
        real-space aggregate structure

   SAXS of aggregates
        test simulations

   Calculation of hydrodynamic properties

   Larger scale transport experiments
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Colloid Behavior of Goethite
Nanoparticles

pHZPC ≈ 9.1

Lumsdon & Evans, J. Coll. Interf. Sci.
164, 119 (1993)

Surface charge vs. pH
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Colloid Behavior of Goethite
Nanoparticles

SAXS of 6 nm diameter FeOOH nanoparticles at pH 5.0 vs. ionic strength 

10-2 M NaNO3

10-3 M NaNO3

10-4 M NaNO3
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Single particle scattering at pH 5.0 and 10-3 M NaNO3  
      Fit particle size and size distribution

Colloid Behavior of Goethite
Nanoparticles

P(q)
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Colloid Behavior of Goethite
Nanoparticles

Structure factor at pH 5.0 and 10-4 M NaNO3  
       Fit electrostatic parameters, Zeff, κeff. 

nanoparticle

surface charge, Z at potential Ψo

ion cloud

! 

V (r) "
##d2$
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r
exp %& r % d( )[ ]

d

S(q) = I(q) / P(q) 
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LB Theory: Kang et al., Geophys. Res. Lett. 31, L21604 (2004)

Simulating the Structure of Goethite
Nanoparticle Aggregates

Lattice Boltzmann:
   Currently limited to 2D!
        growth of fractal crystal structures
        simulated SAXS patterns

Fit to simulated data:
  DF = 1.6

Cluster radius ~ 50 Å

LB Simulation by Guopeng Lu

Simulated SAXS
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Fractal dimension, DF
Efficiency of space filling

Two length scales
individual particle size, ro

largest cluster size, ξ

d = q 
2π

S(q)

P(q)

I(q) ~ S(q)P(q) 

I(q) ~ qD

SAXS can measure size & DF
ANALYTICAL APPROACH

SAXS from Fractal Aggregates

F

Teixeira, J. Appl. Cryst. 21, 781 (1988)

! 

g(r) "1[ ]#
r
DF "3

ro
DF

exp "r $( )
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Colloid Behavior of Goethite
Nanoparticles

increasing pH

SAXS of 6 nm diameter FeOOH nanoparticles vs. pH 
Volume Fraction = 0.075 %; 10-2 M NaNO3
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increasing pH

Colloid Behavior of Goethite
Nanoparticles

SAXS of 6 nm diameter FeOOH nanoparticles vs. pH 
Volume Fraction = 0.075 %; 10-3 M NaNO3

pHZPC
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g(r) 

Monodisperse particles
Sharp peaks in g(r) and S(q)

SAXS from Fractal Aggregates

Hasmy et al., Phys. Rev. B 48, 9345 (1993)

Numerical simulation
Reveals breakdown of fractal

description at low r

S(q)
I(q) ~ qD F

Fractal properties not well-
defined for < 50 particles
Lattuada et al., J. Coll. Interf. Sci.
268, 106 (2003)
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Conclusions
•  Coulombic repulsion evident in non-aggregated
suspensions of goethite nanoparticles.

- Larger data set and better analysis required to
parameterize effective pair potentials

•  Nanoparticles form aggregated clusters with fractal
internal structure well below the pHzpc

- Morphology & short-range structure uncertain

•  Cluster size and density dependent on solution
condition, as expected

- What determines maximum cluster size?
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Simulating the Structure of Goethite
Nanoparticle Aggregates

Long term goal:

   Lattice Boltzmann simulations
        interparticle interaction forces
        hydrodynamic behavior

Alternative:

   Simulated annealing
        no physical description
        seek agreement with SAXS data
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Simulating the Structure of Goethite
Nanoparticle Aggregates

Svergun, Biophysical J. 76, 2879 (1999)

pH 4.99 pH 5.45 pH 6.30

Simulated annealing:
   DAMMIN code optimized for macromolecules
        porous structures possible in principle
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Simulating the Structure of Goethite
Nanoparticle Aggregates

Penn & Banfield Am. Mineral. 83, 1077 (1998)

Linear aggregates?
  TEM observations and MD simulation highlight role of anisotropic structure

Guyodo et al.,
Geophys. Res.
Lett. 30, 1512

(2003)

Rustad & Felmy Geochim. Cosmochim.
Acta, 69, 1405 (2005)

protonation

TiO2 nanoparticles

FeOOH
 nanoparticles
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Lebovka et al., EuroPhys. Lett. 41, 19 (1998)
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Linear aggregates?
  Monte Carlo simulations (2D) highlight role of repulsive interactions

Simulating the Structure of Goethite
Nanoparticle Aggregates
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Repulsive interactions likely limit maximum cluster size
Particle-cluster and cluster-cluster aggregation halts when:

zΨ > kT

pH dependent!
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Simulating the Structure of Goethite
Nanoparticle Aggregates
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Simulating the Structure of Goethite
Nanoparticle Aggregates

Repulsive interactions likely limit maximum cluster size
Particle-cluster and cluster-cluster aggregation halts when

zΨ > kT

pH dependent!
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Partial Disaggregation of  Goethite
Clusters

Almost reversible process …
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Almost reversible process …

… but same final state

Partial Disaggregation of  Goethite
Clusters
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Partial Disaggregation of  Goethite
Clusters

Surface charge drive partial disaggregation?
Finite potential well upon aggregation
Test short-range interaction potentials in simulation

+
+

+
+

+

+

+
+

+
+

+ +
+

+

V
r

Primary maximum
(energy barrier)

Primary minimum
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